Last modified:
This web page presents the settings and results for two parsers (the Single Malt Parser and the Blended Parser) in the multilingual track of the CoNLL 2007 shared task on dependency parsing.
In the multilingual track of the CoNLL 2007 shared task on dependency parsing, a single parser must be trained to handle data from ten different languages. For more information about the task and the data sets, see Nivre et al. (2007b) and the CoNLL 2007 shared task web site.
We used the freely available MaltParser system, which performs deterministic, classifier-based parsing with history-based feature models and discriminative learning. In order to maximize parsing accuracy, optimization has been carried out in two stages, leading to two different, but related parsers:
The two parsers are further described in Hall et al. (2007).
The Single Malt Parser is similar to the parser used in Nivre et al. (2006b) (result page), which parses a sentence deterministically in a single left-to-right pass over the input, with post-processing to recover non-projective dependencies, and which has been tuned for each language by optimizing parameters of the parsing algorithm, the feature model, and (to some degree) the learning algorithm.
The table below describes the settings and results for the Single Malt Parser when used to parse the blind test data.
LAS | UAS | LACC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Language | Parser | FM | SVM | Pseudo | RES | POS | RES | POS | RES | POS |
Arabic | NIVRE -a E -o 3 -p 0 | ara.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F P1 -T 1000 | 0 -cr 0 | 74.75 | 3 | 84.21 | 3 | 85.73 | 2 |
Basque | NIVRE -a E -o 3 -p 1 | bas.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F P1 -T 1000 | 1 -cr 2 | 74.99 | 5 | 80.61 | 6 | 80.98 | 5 |
Catalan | NIVRE -a E -o 2 -p 1 | cat.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F P1 -T 1000 | none -cr 0 | 87.74 | 4 | 92.20 | 6 | 92.19 | 4 |
Chinese | NIVRE -a S -o 2 -p 0 | chi.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.25 -r 0.3 -e 0.1 -S 0 | none -cr 0 | 83.51 | 3 | 87.60 | 5 | 86.03 | 3 |
Czech | NIVRE -a E -o 3 -p 1 | cze.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.25 -r 0.3 -e 1.0 -S 2 -F C1 -T 1000 | 1 -cr 3 | 77.22 | 6 | 82.35 | 6 | 84.55 | 5 |
English | NIVRE -a E -o 3 -p 0 | eng.par | -s 0 -t 1 -d 2 -g 0.18 -c 0.4 -r 0.4 -e 1.0 -S 2 -F C1 -T 1000 | none -cr 0 | 85.81 | 12 | 86.77 | 12 | 90.53 | 12 |
Greek | NIVRE -a E -o 3 -p 1 | gre.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 0 | 1 -cr 0 | 74.21 | 6 | 80.66 | 9 | 84.16 | 4 |
Hungarian | NIVRE -a E -o 1 -p 1 | hun.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 0 | 6 -cr 0 | 78.09 | 3 | 81.71 | 6 | 89.98 | 3 |
Italian | NIVRE -a E -o 2 -p 0 | ita.par | -s 0 -t 1 -d 2 -g 0.1 -c 0.5 -r 0.6 -e 1.0 -S 2 -F C1 -T 1000 | none -cr 1 | 82.48 | 5 | 86.26 | 5 | 88.83 | 6 |
Turkish | NIVRE -a E -o 2 -p 0 | tur.par | -s 0 -t 1 -d 2 -g 0.12 -c 0.7 -r 0.3 -e 0.5 -T 100 -S 2 -F C0 | 1 -cr 2 | 79.24 | 3 | 85.04 | 5 | 87.24 | 2 |
Average | 79.80 | 5 | 84.74 | 6 | 87.02 | 2 |
Table 1. Each language has specific settings for parsing algorithm, feature model (FM), support vector machines (SVM) and pseudo-projective parsing (Pseudo; first parameter is marking strategy). For more details about different settings, please visit the user guide for MaltParser and Pseudo-Projective Parsing. The last six columns describe the results and positions in the CoNLL Shared Task 2007 for each language. Results are given for three evaluation metrics: Labeled Attachment Score (LAS), Unlabeled Attachment Score (UAS) and Label Accuracy (Lacc). The last row presents the average result over all ten languages.
The second parser is an ensemble system, which combines the output of six deterministic parsers, each of which is a variation of the Single Malt Parser with parameter settings extrapolated from the optimization of the Single Malt Parser and from many other previous experiments.
Using one of the NIVRE algorithms for a single parser below (in either parsing direction), the Parser option flags o and p have the same values as the Single Malt Parser for the same language. The Pseudo options for Blended Malt below equal the Pseudo options for Single Malt with the NIVRE algorithms.
The table below describes the settings and results for the Blended Parser when used to parse the blind test data
LAS | UAS | LACC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Language | Direction | Parser | FM | SVM | RES | POS | RES | POS | RES | POS |
Arabic | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | arabic_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F C1 -T 1000 | ||||||||
L->R | NIVRE -a S | arabic_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 1 | arabic_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 76.52 | 1 | 85.81 | 2 | 86.55 | 1 | ||||
Basque | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | basque_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F C1 -T 1000 | ||||||||
L->R | NIVRE -a S | basque_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 1 | basque_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 76.94 | 1 | 82.84 | 1 | 82.52 | 2 | ||||
Catalan | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | catalan_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F P1 -T 1000 | ||||||||
L->R | NIVRE -a S | catalan_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 1 | catalan_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 88.70 | 1 | 93.12 | 3 | 93.02 | 1 | ||||
Chinese | ||||||||||
L->R | NIVRE -a S | See settings and results for Single Malt | ||||||||
R->L | chinese_aS.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.3 -r 0.2 -e 0.1 -S 2 -F C1 -T 1000 | L->R | NIVRE -a E | chinese_aE.par | |||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 0 | chinese_cov.par | ||||||||
R->L | ||||||||||
Ensemble result (official) | 75.82 | 15 | 84.52 | 12 | 78.78 | 15 | ||||
Ensemble result (corrected) | 84.67 | (2) | 88.70 | (3) | 86.98 | (2) | ||||
Czech | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | czech_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.25 -r 0.3 -e 1.0 -S 2 -F P1 -T 1000 | ||||||||
L->R | NIVRE -a S | czech_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 1 | czech_cov.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.25 -r 0.3 -e 1.0 -S 2 -F C1 -T 1000 | |||||||
R->L | ||||||||||
Ensemble result | 77.98 | 3 | 83.59 | 4 | 84.25 | 6 | ||||
English | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | english_aE.par | -s 0 -t 1 -d 2 -g 0.18 -c 0.4 -r 0.4 -e 1.0 -S 2 -F C1 -T 1000 | ||||||||
L->R | NIVRE -a S | english_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 0 | english_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 88.11 | 5 | 88.93 | 5 | 92.16 | 5 | ||||
Greek | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | greek_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 0 | ||||||||
L->R | NIVRE -a S | greek_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 1 | greek_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 74.65 | 2 | 81.22 | 4 | 81.64 | 16 | ||||
Hungarian | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | hungarian_aE.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 0 | ||||||||
L->R | NIVRE -a S | hungarian_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 0 | hungarian_cov.par | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 2 -F P1 -T 1000 | |||||||
R->L | -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1.0 -S 0 | |||||||||
Ensemble result | 80.27 | 1 | 83.55 | 1 | 90.85 | 1 | ||||
Italian | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | italian_aE.par | -s 0 -t 1 -d 2 -g 0.1 -c 0.5 -r 0.6 -e 1.0 -S 2 -F C1 -T 1000 | ||||||||
L->R | NIVRE -a S | italian_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 0 | italian_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 84.40 | 1 | 87.77 | 2 | 89.62 | 3 | ||||
Turkish | L->R | NIVRE -a E | See settings and results for Single Malt | |||||||
R->L | turkish_aE.par | -s 0 -t 1 -d 2 -g 0.12 -c 0.7 -r 0.3 -e 0.5 -T 100 -S 2 -F C0 | ||||||||
L->R | NIVRE -a S | turkish_aS.par | ||||||||
R->L | ||||||||||
L->R | COVINGTON -g A -r 0 | turkish_cov.par | ||||||||
R->L | ||||||||||
Ensemble result | 79.79 | 2 | 85.77 | 2 | 87.33 | 1 | ||||
Average (official) | 80.32 | 1 | 85.71 | 2 | 86.67 | 6 | ||||
Average (corrected) | 81.20 | (1) | 86.13 | (2) | 87.49 | (1) |
Johan Hall | Växjö University, Sweden |
Jens Nilsson | |
Joakim Nivre | Växjö University and Uppsala University, Sweden |
Gülşen Eryiğit | Istanbul Technical University, Turkey |
Beata Megyesi | Uppsala University, Sweden |
Mattias Nilsson | |
Markus Saers |
More information about parsing algorithms, learning algorithms and feature models can be found in the following publications: