MaltParser in the CoNLL-X Shared Task

CoNLL-X Shared Task: Multi-lingual Dependency Parsing


MaltParser 0.4 was used in the CoNLL-X Shared Task on multi-lingual dependency parsing in the system that obtained the second best overall score, not significantly worse than the best score, and that achieved top results for nine languages out of thirteen (with results significantly better than any other system for Japanese, Swedish and Turkish). In this system, MaltParser was combined with pseudo-projective parsing, which requires preprocessing of training data and post-processing of parser output (Nivre and Nilsson 2005). The complete system is described in Nivre et al. (2006).

This web page summarizes our results in the shared task and gives the necessary information to reproduce the MaltParser results.

MaltParser 0.4

MaltParser 0.4 can be downloaded here (MaltParser 0.4: User Guide and Download). The pre- and post-processing tools of pseudo-projective parsing are necessary to reproduce the MaltParser results in the shared task and can be downloaded here (Pseudo-Projective Parsing). The following settings were kept constant for all languages:

Parsing algorithmNIVRE
Parser option-a E (arc-eager)
ProjectivizationMarking strategy for pseudo-projective parsing: 1
LearnerSVM

Settings and Results

  LAS UAS LACC
Language FM P-options SVM-options MP AV POS MP AV MP AV
Arabicara5 -a E -o 3 -s 0 -t 1 -d 2 -g 0.16 -c 0.3 -r 0 -e 1.0 -S 0 66.7159.941-3-4 77.5273.48 80.3475.12
Bulgarianbul2-a E -o 2 -s 0 -t 1 -d 2 -g 0.2 -c 0.3 -r 0.3 -e 0.1 -S 2 -F C1 -T 1000 87.4179.981-2 91.7285.89 90.4484.38
Chinesechi4-a E -o 2 -s 0 -t 1 -d 2 -g 0.2 -c 0.3 -r 0.3 -e 0.1 -S 0 86.9278.322-3 90.5484.85 89.0181.66
Czech cze4-a E -o 3 -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1 -F P1 -S 2 -T 200 78.4267.172 84.8077.01 85.4076.59
Danishdan3-a E -o 2 -s 0 -t 1 -d 2 -g 0.2 -c 0.6 -r 0.3 -e 1.0 -S 0 84.7778.311-2 89.8084.52 89.1684.50
Dutch dut5-a E -o 2 -s 0 -t 1 -d 2 -g 0.16 -c 0.3 -r 0.0 -e 1 -S 0 78.5970.731-2-3 81.3575.07 83.6977.57
German ger3-a E -o 2 -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 1 -S 2 -F P1 -T 1000 85.8278.582-3 88.7682.60 91.0386.26
Japanesejap1-a E -o 2 -s 0 -t 1 -d 2 -g 0.19 -c 0.6 -r 0 -e 0.1 -S 0 91.6585.861 93.1089.05 94.3489.90
Portuguesepor4-a E -o 3 -s 0 -t 1 -d 2 -g 0.2 -c 0.5 -r 0 -e 0.1 -S 0 87.6080.631-2 91.2286.46 91.5485.35
Sloveneslo4-a E -o 3 -s 0 -t 1 -d 2 -g 0.20 -c 0.1 -r 0.8 -e 0.1 -S 2 -F C1 -T 600 70.3065.16NA 78.7276.53 80.5476.31
Spanish spa2-a E -o 2 -s 0 -t 1 -d 2 -g 0.20 -c 0.5 -r 0 -e 0.01 -S 2 -F P1 -T 1000 81.2973.521-2-3 84.6777.76 90.0685.71
Swedish swe3-a E -o 2 -s 0 -t 1 -d 2 -g 0.2 -c 0.4 -r 0 -e 0.1 -S 0 84.5876.441 89.5084.21 87.3980.00
Turkishtur1-a E -o 2 -s 0 -t 1 -d 2 -g 0.12 -c 0.7 -r 0.6 -e 0.01 -S 2 -F C1 -T 100 65.6855.951 75.8269.35 78.4969.59
Average (12 lang)     80.19 1-2 85.48  86.75 

Explanation

FMFeature model (right-click/save-as)
P-optionsParser options
SVM-optionsLIBSVM options together with MaltParser specific options
LASLabeled attachment score
UASUnlabeled attachment score
LACCLabel accuracy
MPMaltParser 0.4
AVAverage in the CoNLL-X Shared Task
POSOur position in the shared task (in boldface). Higher and lower positions indicate differences that are not statistically significant.

MaltParser CoNLL-X Shared Task Group

Joakim NivreVäxjö University, Sweden
Johan Hall
Jens Nilsson
Gülşen EryiğitIstanbul Technical University, Turkey
Svetoslav MarinovUniversity of Skövde, Sweden

More information

More information about parsing algorithms, learning algorithms and feature models can be found in the following publications: