A Quick Guide to MaltParser Optimization

Joakim Nivre Johan Hall

1 Introduction

MaltParser is a system for data-driven dependency parsing, which can be used to induce
a parsing model from treebank data and to parse new data using an induced model.
Parsers developed using MaltParser have achieved state-of-the-art accuracy for a number
of languages (Nivre et al., 2006; Hall et al., 2007; Nivre et al., 2007). However, MaltParser
is a fairly complex system with many parameters that need to be optimized. Simply
using the system “out of the box” with default settings is therefore likely to result in
suboptimal performance.

The purpose of this document is to give a practical guide to the steps needed to
reach good performance, starting from the default settings and tuning (i) the parsing
algorithm, (ii) the learning algorithm, and (iii) the feature model. It is by no means
an exhaustive description of all the options available in MaltParser and is only meant
as an introduction. For complete information about all parameters and settings in
MaltParser, we refer to the documentation at http://maltparser.org. The MaltParser
website also contains information about settings used in published experiments, notably
in the CoNLL shared tasks 2006 and 2007 (Buchholz and Marsi, 2006; Nivre et al., 2007),
as well as pretrained models for a number of languages.

2 Data Requirements

The training data for MaltParser consists of sentences annotated with dependency trees.
If the source treebank does not contain dependency trees, there are usually standard
procedures for conversion that can be used (with varying degrees of precision depending
on the nature of the original annotation). MaltParser supports several input formats,
but in this document we will assume that data is in the CoNLL representation format
(Buchholz and Marsi, 2006), which is currently the de facto standard for data-driven
dependency parsing.

Optimization requires repeated testing on held-out data using either cross-validation
or a separate development test set. Based on our own experience, we recommend using
cross-validation for training sets up to 200,000 tokens. For larger training sets, a single
training-test split is usually sufficient provided that at least 10% of the data is set aside
for development testing. Regardless of whether cross-validation or a development test
set is used for optimization, it is good experimental practice to reserve a separate data
set for final evaluation.

3 Parsing Algorithm

MaltParser is based on the transition-based approach to dependency parsing, which
means that a parser consists of a transition system for deriving dependency trees, cou-
pled with a classifier for deterministically predicting the next transition given a feature
representation of the current parser configuration (Nivre, 2008). In order to derive train-
ing data for the classifier, an oracle is used to reconstruct a valid transition sequence
for every dependency structure in the training set. A transition system together with
an oracle defines a parsing algorithm. MaltParser 1.4.1 is equipped with nine different
parsing algorithms, which differ not only in terms of transitions and oracles but also
with respect to the class of dependency structures they can handle. Table 1 lists the
option values for the option parsing algorithm (-a) for all nine algorithms, together
with information about the class of dependency structures they cover and pointers to
the literature.

Table 1: Parsing algorithms in MaltParser 1.4.1.

parsing_algorithm (—a) || Structures References

nivreeager Projective Nivre (2003), Nivre (2008)
nivrestandard Projective Nivre (2004), Nivre (2008)

COVproj Projective Nivre (2006), Nivre (2008)

COVIONPIoj Non-Projective | Nivre (2006), Nivre (2007), Nivre (2008)
stackproj Projective Nivre (2009)

stackeager Non-Projective | Nivre (2009)

stacklazy Non-Projective | Nivre et al. (2009)

planar Planar Gémez-Rodriguez and Nivre (2010)
2-planar 2-Planar Goémez-Rodriguez and Nivre (2010)

3.1 Choosing a Parsing Algorithm

A useful first step in the optimization of MaltParser to a new language or data set is to
try out different parsing algorithms, by varying the value of the option parsing_algorithm
(-a). Although the performance of a given algorithm is dependent also on the choice
of learning algorithm and feature model, a comparison of parsing algorithms under oth-
erwise default settings is usually indicative of which algorithms are likely to give good
performance on the given data set. Minimally, the default algorithm nivreeager should
be compared to stackproj, since one of these two algorithms often perform best.

Note: Some of the parsing algorithms have options of their own that can be tuned.
See the MaltParser documentation for more information.

3.2 Handling Non-Projective Structures

If the training data contains (a non-negligible proportion of) non-projective dependency

structures, parsing accuracy can usually be improved in one of two ways.

e Use a parsing algorithm for non-projective structures (covnonproj, stackeager,
stacklazy, 2planar). The rule of thumb here is that if nivreeager performs better
than stackproj in the first comparison, then covnonproj is likely to be the best

choice; if the results are reversed, then stacklazy is probably the better option.

e Use a parsing algorithm for projective structures (nivreeager, nivrestandard,
covproj, stackproj) but combine it with pseudo-projective pre- and post-processing
(Nivre and Nilsson, 2005). Add the option marking strategy (-pp) with the value

head, path or head+path to try this out.

Note: If pseudo-projective parsing turns out to work best, there are a few additional

options besides marking_strategy that can be tuned, but the effect is usually marginal.®
See the MaltParser documentation for more information.

4 Learning Algorithm

The learning problem in transition-based parsing, as implemented in MaltParser, is to
induce a classifier for predicting the next transition given a feature representation of the
current parser configuration, using as training data the transitions needed to derive the
dependency structures in the training set relative to a given oracle. MaltParser 1.4.1
has two built-in machine learning packages for this task: LIBSVM and LIBLINEAR (see

Table 2).

Table 2: Learning algorithms in MaltParser 1.4.1.

learner (1)

Learner Types

References

libsvm
liblinear

Support vector machines (with kernels)
Various linear classifiers (including SVMs)

Chang and Lin (2001)
Fan et al. (2008)

4.1 Choosing a Learning Algorithm

Both LIBSVM and LIBLINEAR can give state-of-the-art accuracy and the choice be-
tween them is primarily dictated by practical constraints having to do with optimization

effort and efficiency constraints. In particular:

1The exception is the option covered_roots, which can sometimes be quite important and which is

discussed in Section 6 below.

e LIBSVM makes feature optimization a little easier thanks to the kernel that im-
plicitly add conjoined features, whereas LIBLINEAR requires conjoined features
to be added explicitly to the feature model specification (see Section 5).

e LIBSVM is usually more memory efficient than LIBLINEAR because it does not
store weight vectors explicitly.

e LIBLINEAR is much faster than LIBSVM, both for training and parsing, and
parsing speed depends only on the number of features, whereas for LIBSVM it is
proportional to the number of training instances in the worst case.

We therefore recommend using LIBSVM for quick feature optimization or when memory
consumption is an issue, but LIBLINEAR in all other circumstances.

Note: Both LIBSVM and LIBLINEAR include a large number of options that can be
tuned, including different learner types as well as hyperparameters for each learner type,
but MaltParser’s default settings for each package — a quadratic kernel for LIBSVM and
a multi-class SVM for LIBLINEAR, — usually gives competitive performance. See the
MaltParser documentation for more information.

4.2 Splitting the Training Data

Instead of training a single classifier on the entire training set, MaltParser provides
functionality for dividing the training set into equivalence classes with respect to some
salient feature (such as the part of speech of the next input token) and training separate
classifiers on each subset. At parsing time, the same feature is used to decide which
classifier to consult. It is important to note that the effect of using this functionality is
completely different depending on which machine learning package is used:

e With LIBSVM it is primarily a technique for speeding up both training and parsing
with large training sets, for which training times can otherwise be prohibitive. On
the negative side, it may lead to a small drop in accuracy (partly because tagging
errors may lead to the wrong classifier being used at parsing time).

e With LIBLINEAR it is primarily a technique for improving parsing accuracy by
increasing the separability of the training data, essentially emulating a one-level
decision tree with linear classifiers at the leaf nodes. On the negative side, it will
lead to a small drop in efficiency and may increase memory usage. Moreover, the
positive effect on accuracy is usually small if the feature model has been properly
optimized (see Section 5).

In order to use the data splitting functionality, three options must be specified:

e data split_column (-d) — the input feature used for the split, usually POSTAG in
the CoNLL format.

e data split_structure (-s) — the word token used for the split, defined relative
to the parser configuration, usually Input[0] for nivreeager, nivreeager, planar
and 2planar; Stack[0] for stackproj, stackeager and stacklazy; and Right [0] for

covproj and covnonproj.

e data split_threshold (-T) — the minimum frequency for a feature value to define
its own equivalence class, usually set to 1000.

Note: Splitting the training data is in practically necessary when using LIBSVM on
training sets that contain on the order of 1 million words (like the training sets of the
Prague Dependency Treebank and the Penn Treebank), where training can otherwise
take weeks or months, but optional with LIBLINEAR and with small training sets.

5 Feature Model

Most of the effort when optimizing MaltParser usually goes into feature selection, that is,
in tuning the feature representation of a parser configuration that constitutes the input
to the classifier. A feature model in MaltParser is defined by a feature specification
file in XML format, and the option features (-F) is used to specify which file should
be used. The default specification files for each combination of parsing algorithm and
machine learning package, which are used if no other file is specified, can be found in the
appdata/features directory of the MaltParser distribution and constitute good starting
points for further optimization. In the rest of this section, we will give step-by-step
instructions for how to optimize the feature model. We will start by assuming that
the model is to be used together with LIBSVM, with a kernel that creates conjoined
features implicitly. We will then go on to describe how such a model can be adapted for
use with LIBLINEAR. We will concentrate on the conceptual content of feature models
and refer the reader to the MaltParser documentation for the formal syntax of feature
specifications.

5.1 Optimizing a Feature Model for LIBSVM

A default feature model essentially consists of three groups of features, all of which are
centered around the two target tokens, i.e., the tokens that are being considered for a
dependency in the current configuration:?

e Part-of-speech tags (column POSTAG) in a wide window around the target tokens.
e Word forms (column FORM) in a narrower window around the target tokens.

e Dependency labels (column DEPREL) on outgoing arcs of the target tokens.

2The target tokens are referred to by Stack [0] (top of the stack) and Input [0] (next input token)
for the parsing algorithms nivreeager, nivrestandard, planar and 2planar; by Stack[1] and
Stack[0] (the two top tokens of the stack) for stackproj, stackeager and stacklazy; and by
Left [0] and Right [0] for covproj and covnonproj.

The optimal window size for part-of-speech tags and word forms may differ depending
on training set size and therefore needs to be tuned using backward feature selection
(shrinking the window) and forward feature selection (expanding the window). The
usefulness of dependency label features can also be checked using backward selection,
but this is usually less important. Finally, if the training data contains additional to-
ken attributes such as lemmas (column LEMMA), coarse part-of-speech tags (column
CPOSTAG) and morphosyntactic features (column FEATS), it is usually worth adding
features over these columns for the two target tokens and possibly one lookahead token.

Note: When defining features over the list-valued FEATS column, it is possible to use
the Split operator to define one binary feature over each atom that may occur in the list
(as opposed to having a feature for each distinct list). See the MaltParser documentation
for more information.

5.2 Optimizing a Feature Model for LIBLINEAR

Using LIBLINEAR with a feature model optimized for LIBSVM will usually result in
suboptimal performance, because all features are treated as independent of each other.
In order to compensate for the lack of a kernel, it is necessary to add conjoined features
using the operators Merge (for pairs) and Merge3 (for triples). Usually, a relatively small
number of such features will suffice to reach the same level as the corresponding LIBSVM
model:

e Part-of-speech tag features can be conjoined into (overlapping) trigrams cover-
ing the same window as the atomic features (e.g., Merge3(InputColumn(POSTAG,
Stack[2]), InputColumn(POSTAG, Stack[1]), InputColumn(POSTAG, Stack[0]))).

e Word form features can be conjoined with the corresponding part-of-speech tag fea-
ture (e.g., Merge (InputColumn (FORM, Input[0]), InputColumn(POSTAG, Input[0]))).

e Dependency label features can be conjoined with the part-of-speech tag feature of
the parent (e.g., Merge3(InputColumn(POSTAG, Stack[0]), OutputColumn(DEPREL,
ldep(Stack[0])), OutputColumn(DEPREL, rdep(Stack[0]))).

Although the addition of conjoined features will generally improve parsing accuracy, it
will also increase memory requirements. This holds especially for conjunctions involving
high-dimensional features such as word form features, which can be very expensive in
this respect.

Note: MaltParser’s feature specification language supports a wide range of different
feature types over and above the ones discussed here, such as distance features and suffix
features. See the MaltParser documentation for more information.

6 Tips and Tricks

In this final section, we discuss a few special phenomena that may cause problems unless
MaltParser’s options are adjusted appropriately.

e Dangling punctuation: If the annotation scheme used in the training data does
not attach punctuation as dependents of words, and if this is represented in the
CoNLL format by setting HEAD=0 for punctuation tokens, this may give rise to a
lot of spurious non-projective dependencies (dependency arcs spanning a punc-
tuation token). To avoid this, use the option covered root (-pcr) with value
left/right/head, which makes MaltParser preprocess the data and attach the
punctuation tokens to the left/right /head end of the shortest arc spanning the
token.

e Root labels: After parsing is completed, MaltParser assigns the default label
ROOT to all tokens having HEAD=0 that have not been assigned a label by the parser.
If the annotation scheme used in the training data has another standard root label,
the default root label can be changed using the option root_label (-grl).

References

Buchholz, S. and E. Marsi (2006). CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL), pp. 149-164.

Chang, C.-C. and C.-J. Lin (2001). LIBSVM: A Library for Support Vector Machines.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008). LIBLINEAR:
A library for large linear classification. Journal of Machine Learning Research 9,
1871-1874.

Goémez-Rodriguez, C. and J. Nivre (2010). A transition-based parser for 2-planar de-
pendency structures. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pp. 1492—-1501.

Hall, J., J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M. Nilsson, and M. Saers (2007).
Single malt or blended? A study in multilingual parser optimization. In Proceedings
of the CoNLL Shared Task of EMNLP-CoNLL 2007.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT), pp. 149-160.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. In Proceedings of
the Workshop on Incremental Parsing: Bringing Engineering and Cognition Together
(ACL), pp. 50-57.

Nivre, J. (2006). Constraints on non-projective dependency graphs. In Proceedings of
the 11th Conference of the FEuropean Chapter of the Association for Computational
Linguistics (EACL), pp. 73-80.

Nivre, J. (2007). Incremental non-projective dependency parsing. In Proceedings of Hu-
man Language Technologies: The Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL HLT), pp. 396-403.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Com-
putational Linguistics 34, 513-553.

Nivre, J. (2009). Non-projective dependency parsing in expected linear time. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP
(ACL-1JCNLP), pp. 351-3509.

Nivre, J., J. Hall, S. Kiibler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret (2007).
The CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pp. 915-932.

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Marinov, and E. Marsi
(2007). Maltparser: A language-independent system for data-driven dependency pars-
ing. Natural Language Engineering 13, 95-135.

Nivre, J., J. Hall, J. Nilsson, G. Eryigit, and S. Marinov (2006). Labeled pseudo-
projective dependency parsing with support vector machines. In Proceedings of the
10th Conference on Computational Natural Language Learning (CoNLL), pp. 221-225.

Nivre, J., M. Kuhlmann, and J. Hall (2009). An improved oracle for dependency parsing
with online reordering. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP), pp. 73-76.

Nivre, J. and J. Nilsson (2005). Pseudo-projective dependency parsing. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 99-106.

